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ABSTRACT

Incidents on freeways frequently cause long, unan-
ticipated delays, increasing the economic cost of
travel to motorists. This paper provides a simple
model for estimating the mean and variance of
time lost due to incidents on freeways. It also
reviews methods for assigning a monetary value to
the variability that such incidents introduce into
daily travel. The paper offers an easy-to-implement
approach to measuring the performance of freeway
incident reduction strategies, an approach that
should be useful in early project selection exercises
where a sketch planning process is used to identify
promising actions. 

INTRODUCTION

From the perspective of economic theory, avoid-
able time spent traveling is a nonproductive activi-
ty against which there is an opportunity cost. For
example, work time may be lost due to delays in
the daily commute. A common approach to plac-
ing a cost on this extra time spent in travel is to
assess the value of such time in terms of the hours
lost multiplied by some fraction of the gross hourly
wage, including Worker’s Compensation and other
fringe benefits paid for by employers (Hensher
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1997). Alternatively, numerous travel behavior
studies have used consumer choice models to
derive the value of time spent in travel, for both
work and nonwork purposes. The most popular
approach has been to estimate logit models of
mode or route choice. In these models, the choices
made by a sample of travelers are related to the dif-
ferences these individuals face in terms of in-vehi-
cle and out-of-vehicle travel times and also in terms
of the various monetary costs associated with each
mode or route alternative. The ratio of the result-
ing parameter values assigned to the travel time
versus travel cost variables in these models is then
used to derive a monetary value of time savings
(Hensher 1997). 

Most of these time valuation studies have based
their findings on estimated traveler responses to
changes in averaged or, more usually, representa-
tive daily travel times. However, a number of
empirical studies have demonstrated the impor-
tance of also considering travel time variability in
the derivation of traveler cost functions (for exam-
ple, Jackson and Jucker 1982, Polak 1987, Black
and Towriss 1993, Senna 1994, Abdel-Aty et al.
1995, Noland and Small 1995, Small et al. 1995,
1997). These studies indicate that under the right
circumstances, notably during congested peak peri-
od travel, reducing the variability, and hence the
uncertainty, associated with trip times can offer
significant traveler benefits. This is important
because it is usual for travel time savings to domi-
nate the benefits assigned to major transportation
improvement projects (USDOT FHWA 1996). 

Empirical evidence confirms that a major cause
of day-to-day variability in trip times is the occur-
rence of traffic incidents, including major accidents
that block traffic lanes for extended periods and
many minor incidents, such as vehicle breakdowns
(see Lindley 1987, Giuliano 1989, Schrank et al.
1993). In the following section, a model is
described for estimating both the mean and vari-
ance in the time lost due to such traffic incidents
along freeways. The model is fitted to data on a
number of different incident types, for two-, 
three-, and four-lane freeways, and for a range of
congestion levels. 

In the third section of the paper, methods are
reviewed for assigning a monetary value to the
variability that such incidents introduce into daily
travel. A high level of daily variability in the time it
takes to complete a specific trip implies a less-than-
reliable transportation system. Such variability is
likely to result in one of two outcomes, either a) the
traveler arrives late or b) the traveler makes an ear-
lier departure than desired, with the possibility on
any given day of arriving earlier than necessary.
Either way, time is lost or at least used in a less than
optimal fashion. If travelers attach a high value to
on-time arrivals, then a high level of variability in
daily travel times represents a significant disbenefit
that needs to be accounted for in project assess-
ments. Recent research, discussed below, indicates
that this is the case. In particular, a number of stud-
ies were found to have used stated preference (SP)
surveys to capture and quantify traveler perceptions
about the day-to-day reliability of their travel
options. While numerical results from these studies
vary a good deal, they indicate that travelers
involved in repetitive trip-making are likely to place
a significant premium on consistency in day-to-day
trip times. Based on this literature, two different val-
uation methods were selected and linked to the inci-
dent delay model described in the second section of
the paper. The two methods are used to demonstrate
the importance of incorporating the costs of either
travel time variability or the congestion that pro-
duces it into project benefit-cost analyses. 

The results of the modeling also suggest that real
time incident management (IM) systems, based on
rapid and accurate incident detection and clear-
ance, are promising components of regional
Intelligent Transportation System (ITS) strategies.
In this context, freeway-based IM systems appear
to be especially good candidates for further analy-
sis since they deal with the redirection or control of
potentially large traffic volumes. The following
analysis offers an easy-to-implement approach to
measuring the performance of freeway incident
reduction strategies, an approach that should be
useful in early project selection exercises where a
sketch planning process is used to identify likely
project candidates.
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MEASURING TRAVEL TIME VARIABILITY:

AN INCIDENT ANALYSIS PROCEDURE

In this section, a model is presented for estimating
the mean and variance of delays due to freeway
incidents as a function of volume-to-capacity (V/C)
ratio. Results of fitting the model to data on the
magnitude, frequency, and duration of incidents
are also presented. 

The model provides estimates of delays due to
accidents, debris, and vehicle breakdowns. It does
not include the effects of delays due to day-to-day
variations in traffic volume, weather conditions, or
roadwork. Taking these effects into account could
significantly increase our estimates of day-to-day
variations in travel times. However, delays due to
variations in traffic volume, weather conditions, and
roadwork are more easily anticipated by motorists
than delays due to accidents and vehicle break-
downs. Issues regarding the valuation of different
types of delays are discussed further in the third
section. 

The following variables are used in the model
description:
� V = average volume on the freeway (in vehicles

per hour). This is the rate at which vehicles
arrive at the back of the queue after an incident
occurs and a queue forms.

� C = the capacity (Level of Service E) of the free-
way prior to the occurrence of the incident (in
vehicles per hour). 

� r = capacity reduction factor due to the incident.
The quantity rC is the rate at which vehicles
pass the incident before it is cleared. If r = 0, the
freeway is completely blocked by the incident. 

� g = average “getaway” volume from the queue
after the incident is cleared, expressed as a frac-
tion of C. 

� Ti = incident duration (in hours).
� Tg = duration of the getaway period during

which the queue is dissipating (in hours).
� Q = maximum queue length (in vehicles).
� Di = total delay incurred by all vehicles during

the incident (in vehicle-hours).
� Dg = total delay incurred by all vehicles during

the getaway period (in vehicle-hours).
� D = total delay incurred as a result of the inci-

dent (in vehicle-hours).

The model calculates D as a function of V, C, r, g,
and Ti.

An incident will cause a queue if the freeway
volume V is greater than the available freeway
capacity during the incident (i.e., if V>rC). The
queue will grow in length until the incident is cleared
(Ti hours after the incident occurred). The queue
growth rate during the incident (in vehicles per
hour) is equal to the rate at which vehicles arrive at
the end of the queue (V) minus the rate at which
they get past the incident (rC). The maximum queue
length, which occurs at that point in time when the
queue is cleared, is calculated as follows

Q = (V– rC) Ti (1.1)

Because the queue grows from a length of zero
(when the incident occurs) to a length of Q (when
the incident is cleared), the average length of the
queue during the incident is Q/2. Hence, the delay
incurred by vehicles during the incident is calculat-
ed as follows:

Di = (1/2) Q Ti = (1/2)(V–r C) Ti
2 (1.2)

After the incident is cleared, the queue will gradu-
ally dissipate, at a rate dependent on the getaway
capacity and the volume:

Tg = Q/(gC-V) (1.3)

Hence, the delay incurred by vehicles while the
queue is dissipating is calculated as follows: 

Dg = (1/2) Q Tg = (1/2) Q2/(gC–V) = 
(1/2) (V–r C)2 Ti

2 /(gC–V) (1.4)

Total delay due to the incident is then calculated as
follows:

D = Di + Dg = 
(1/2) C Ti

2 (V/C–r) (g–r)/(g–V/C) (1.5)

An important implication of this simple model is
that the total delay due to an incident varies with
the square of incident duration. For example, if the
duration of incidents is reduced by 10%, then the
total delay caused by the incident is reduced by
19% (1–0.92). This is because reducing incident
duration by 10% means that 10% fewer vehicles
will be caught in the queue caused by the incident,
and each vehicle caught in the queue will spend
10% less time in the queue.
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Equation (1.5) provides an estimate of total
delay to all vehicles due to an incident. To estimate
the mean and variance of incident-related delays
experienced by individual motorists, we make the
following assumptions for each class of incident (k)
to be examined:
� The occurrence of incidents on a highway sec-

tion is governed by a Poisson process such that
the expected number of incidents is equal to
�kVL, where �k is the incident rate, V is vol-
ume, and L is section length.

� Incident durations follow a Gamma distribu-
tion1 with mean mk and variance sk

2.
� Not all motorists affected by an incident experi-

ence the same amount of delay. In particular, we
assumed that delays experienced by motorists
during a given incident would follow a uniform
distribution ranging from zero to twice the ex-
pected delay for the incident.
Using these assumptions, we can calculate the

mean and variance of a motorist’s delay per vehi-
cle-mile for each class of incidents as follows:

�dk = �k (1/2) C (mk
2+sk

2) (V/C–rk) 
(g–rk)/(g–V/C) (1.6)

�dk
2 = (4/3)�dk mk (1–rk/(V/C))(sk

2 + mk
2/2)/ 

(sk
2 + mk

2)–�dk
2 (1.7)

where

� �dk is the mean delay (in hours per vehicle-mile)
due to the class of incidents.

� �dk
2 is the variance of delay due to the class of

incidents.
� Other variables are as defined above.

In deriving equations (1.6) and (1.7), we used the
fact that the expected value of the square of any
random variable is equal to the sum of its variance
and the square of its mean. We also used the fact
that if the probability density function of a random
variable t is uniform between 0 and 2T, then the
expected value of t2 is equal to 4T2/3.

A spreadsheet was developed to apply these
equations to estimate the mean and variance of

delays due to incidents as a function of volume-to-
capacity ratio. In the spreadsheet, incidents were
classified by type (abandoned vehicle, accident,
debris, mechanical/electrical, stalled vehicle, flat
tire, and other) and severity (shoulder, one, two,
three, or four lanes blocked). For each class of inci-
dent, data from Sullivan et al. (1995) were used to
estimate mk, sk

2, �k, and rk, and runs of the traffic
microsimulation model FRESIM2 performed by
Margiotta et al. (1997) were used to estimate g. 

With the above equations for �dk and �dk
2, esti-

mates of the mean and variance of delays due to
each class of incident were developed for volume-
to-capacity ratios ranging from 0.05 to 1.0 for
freeways with 2, 3, and 4 lanes in each direction.3

The means and variances for individual incident
classes were then summed to produce the mean
and variance of all delays due to incidents as a
function of number of lanes and volume-to-capac-
ity ratio.4 The results, shown in figures 1 and 2,
were a set of smooth curves to which the following
equations5 were fit.

� Freeways with two lanes in each direction:

�d = 0.0154(V/C)18.7 + 0.00446(V/C)3.93 (1.8)

�d
2 = 0.00408(V/C)21.2 + 0.00199(V/C)4.07 (1.9)

� Freeways with three lanes in each direction:

�d = 0.0127(V/C)22.3 + 0.00474(V/C)5.01 (1.10)

�d
2 = 0.00288(V/C)23.2 + 0.00166(V/C)5.06 (1.11)
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1 Golob et al. (1987) and Giuliano (1989) found incident
durations to fit a log-normal distribution. However, this
distribution presents some analytically intractable prob-
lems. The Gamma distribution offers an approximation
that is easier to work with. 

2 FRESIM is a traffic microsimulation model. Simulation
runs were required to estimate the value of the parameter
g. The other variables are derived directly from the data
provided by Sullivan et al. (1995).
3 In estimating the mean and variance of incident delays
for a given V/C ratio, we assume that the volume of traf-
fic does not vary over time, since our focus is on develop-
ing simple relationships for sketch planning. For more
detailed applications, Sullivan et al. (1995) developed a
computer program named IMPACT for estimating inci-
dent delays with time-varying traffic. 
4 Under the assumptions presented earlier in this section,
delays for the different incident classes constitute a set of
independent random variables. For independent random
variables, the mean of their sum is equal to the sum of
their means, and the variance of their sum is equal to the
sum of their variances (see Drake 1967, 107–108).
5 Equations are not applicable when V/C > 1.0, i.e., when
demand volume exceeds capacity so that queuing occurs
even if there are no incidents.



� Freeways with four or more lanes in each direc-
tion:

�d = 0.00715(V/C)32.2 + 0.00653(V/C)7.05 (1.12)

�d
2 = 0.00229(V/C)22.2 + 0.00124(V/C)5.27 (1.13)

where

� �d is the average delay experienced by a
motorist due to all incidents in hours per vehi-
cle-mile.

� �d
2 is the variance of delay experienced by a

motorist due to all incidents in hours squared
per vehicle-mile.

� V is volume in vehicles per hour.
� C is capacity in vehicles per hour.

The equations presented above closely fit the re-
sults presented in figures 1 and 2. In all cases, the
adjusted R-squared values exceeded 0.99.

VALUATION METHODS: BENEFITS

OF MORE RELIABLE TRAVEL TIMES

In this section, two different approaches to assign-
ing a user benefit (cost) to more (less) reliable trav-
el times are linked to the above model of delays
due to incidents. In each case the method is based
on recently reported empirical analyses in which
traveler cost models have been fitted to data from
SP surveys designed to explore traveler responses
to variability in day-to-day travel times. In the first

approach, an additional cost of travel is assigned
directly to a measure of trip time variability. In the
second approach, an additional cost of travel is
assigned instead to that part of a trip in which delays
caused by congestion occur. The objective in both
instances is to provide a method for quantifying the
benefits associated with improved system reliability
that can also make use of data that can be routinely
collected with the deployment of real time regional
traffic monitoring systems.

The first of these trip cost models (model 1) has
the form:

Uc = a1*T + a2*V(T) + a3*M (2.1)

where Uc equals the expected cost of the daily trip
(e.g., the commute), and a1, a2, and a3 are para-
meters that reflect travelers’ relative dislike of,
respectively, trip time T, a measure of trip time
variability V(T), and a monetary travel cost, M. In
recent years, a number of researchers have
attempted to derive the parameters for this and
more elaborate travel cost models by using SP sur-
veys. In such surveys, a sample of travelers is asked
to choose between a number of hypothetical trip-
making options that offer different trade-offs
between trip time, trip time variability, and trip
costs (see Jackson and Jucker 1982, Black and
Towriss 1993, Small et al. 1997). The resulting
ratio of a2/a1 in equation (2.1) provides a useful
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measure of the relative importance of changes in
travel time variability versus changes in total trip
time. The ratio of a2/a3 also allows a monetary cost
to be assigned to the importance of such variabili-
ty.

In their London study of travel time reliability,
Black and Towriss (1993) used such a model to
obtain a value of 0.55 for the ratio of a2/a1 (quot-
ed in Small et al. 1995, 54). They define V(T) in
their model as the standard deviation of travel
time. This indicates that changes in the standard
deviation of trip time is significant, at a little more
than half the value of an equivalent increase in trip
duration itself. A similar ratio of 0.35 was ob-
tained by the SP-based study of morning com-
muters route choice in Los Angeles, carried out by
Abdel-Aty et al. (1995). In this case, their model
leaves out the monetary costs of commuting. A
more recent study by Small et al. (1997) also used
a stated preference survey of morning peak period
commuters in southern California. They estimated
a number of different binary logit choice models,
including a version of equation (2.1) above, with
V(T) also set equal to the standard deviation of
travel time. They obtained much higher values on
this variability term than previous studies. In their
case, an additional increase of 1 minute in the stan-
dard deviation of travel time was valued at 1.31
times that of an additional minute of total time
savings per se, where this latter was taken to be
50% of the median wage rate in their sample. A
similar result, with a2/a1 producing a ratio of 1.27,
was also obtained by Small et al. (1995), using a
different SP survey of Los Angeles commuters and
a model that left out the monetary cost variable M
in equation (2.1) above. 

The significant differences in the values associ-
ated with variability (reliability) across these and
related studies appear to result to a large degree
from differences in study intent as well as survey
design. However, the empirical work discussed by
Senna (1994), Small et al. (1995, 1997), Noland et
al. (1997), and Bates (1997) also demonstrates that
we should expect some significant differences in
value of time use parameters based on trip purpose
(notably work-related versus commuting versus
noncommuting activities), socioeconomic status
(such as income and family structure), and based

on differences in traveler attitudes towards sched-
ule compliance (e.g., risk-prone versus risk-averse
types). Scheduling constraints imposed by the
inflexibility and importance of fixed working hours
are also likely to differentially influence travelers’
responses to uncertain trip times. It is also possible,
though currently unclear, that the underlying level
of recurrent congestion may affect such valuations.
Small et al. (1995, 54) quotes a British study (MVA
Consultancy 1992) as suggesting a plausible value
for the ratio of a2/a1 between 1.1 and 2.2, but this
is based on very limited empirical evidence. More
work is obviously warranted on this topic, with the
probable conclusion that the effects of travel time
reliability ought to be evaluated on a market-sector
and context-sensitive basis.

Model 1 is one of the simplest traveler cost
models to incorporate travel time variability
impacts. Polak (1987), Senna (1994), and Noland
et al. (1997) offer others. In particular, the recent
work by Small et al. (1997) provides a more direct
empirical link between commuting costs, travel
time variability, and travelers’ valuation of early as
well as late arrivals. An important finding of their
work is that model 1, with V(T) defined as the
standard deviation of travel time, appears to be a
useful surrogate for their more elaborate travel
(commuting) cost equations, in which the effects of
scheduling delays are captured by the use of explic-
it early and late arrival penalties. This suggests that
we can use equation (2.1) to capture most of the
time-use benefits resulting for incident-induced
delays, without having to go into more elaborate
schedule-impact modeling, at least for the purpos-
es of sketch planning studies.

A second approach (model 2) to assigning a val-
uation to system reliability is to assign a cost direct-
ly to congestion. This has the practical advantage of
linking directly computable measures of the loca-
tion and duration of congestion (using in-vehicle
and along-the-highway sensor systems) to a suitable
valuation of travelers’ dissatisfaction with unex-
pected en route delays. There is a limited body of
empirical evidence to indicate that congested travel
time is assigned a comparatively high cost by trav-
elers, although once again the values reported cover
quite a wide range. The most recent empirical work
on this topic is reported by Small et al. (1997), who
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estimated binary logit travel choice models using
travel cost functions of the following general form,
again using data from their SP survey of southern
California morning commuters in 1995:

Uc = a1*T + a2*ƒ [Tc] + a3*M (2.2)

where T=total expected travel time, ƒ (Tc) = a func-
tion of the time spent in traffic congestion,
M=monetary cost of travel, and a1, a2,a3 are again
the estimated model parameters. They use two
specifications for ƒ (Tc). The first of these sets
ƒ (Tc) equal to the percentage of the trip time spent
in congestion, while the second model uses the
number of minutes spent in congestion directly.
The authors also introduce income effects into their
more elaborate model formulations. As a set, their
results indicate a considerable aversion to conges-
tion among their respondents. Their results imply
that, for the study’s median trip length of 26 min-
utes, a shift from 1 minute of uncongested to con-
gested travel time was valued at almost 3 times the
value of the time itself, which in turn implies that the
value of congested time is about 4 times the value of
uncongested time. Their results also suggest that this
ratio may vary a good deal by trip length, with val-
ues ranging from about 2 times higher for 60-minute
trips to six times higher for 15-minute trips. Past lit-
erature suggests that their results are on the high
side. This is probably due to the congestion focus of
the study and to the high levels of congestion their
respondents are used to. Again, results to date are
likely to be model-formulation as well as context
and market-sector sensitive. 

Table 1 summarizes high and low values sug-
gested by the literature for models 1 and 2 in rela-
tion to the value of travel time under uncongested
conditions.

LINKING INCIDENT DELAY MODELS

AND VALUATION METHODS

In this section, we demonstrate the implications of
linking the valuation methods in the third section
with the incident delay models in the second.

Our first hypothetical case for this demonstra-
tion is a 20-mile commuter trip on a 3-lane free-
way with a typical volume to capacity ratio of
0.90. These circumstances are typical of those
experienced by the California commuters surveyed
by Small et al. We also assume that when traffic is
not affected by incidents, the average speed is 55
miles per hour and the cost of travel time under
uncongested conditions for commuters is $10 per
vehicle-hour.

For this hypothetical case, the average delay due
to incidents is:

(20 miles)(0.0127(0.90)22.3 + 0.00474 
(0.90)5.01) = 0.080 hours

and the standard deviation of trip time is: 

((20 miles)(0.00288(0.90)23.2 + 0.00166 
(0.90)5.06))0.5 = 0.156 hours

Table 2 shows the results of applying models 1 and
2 with high and low values.

Our second hypothetical case for this demon-
stration is a 5-mile commuter trip on a 2-lane free-
way with a typical volume to capacity ratio of
0.80. We also assume that when traffic is not
affected by incidents, the average speed is 60 miles
per hour and the cost of travel time under uncon-
gested conditions is $10 per hour.

For this hypothetical case, the average delay due
to incidents is:

(5 miles)(0.0154(0.80)18.7 + 0.00446 (0.80)3.93)
= 0.010 hours
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TABLE 1   

Model 1 Model 2

Value of travel time under 
uncongested conditions V V

Value of incident-related 
delay V 2V to 6V

Value of standard 
deviation of trip time 0.3V to 1.3 V —

TABLE 2   

Cost components Model 1 Model 2

Travel time under 
uncongested conditions 3.64 3.64

Incident-related delay 0.80 1.60 to 4.81
Standard deviation 

of trip time 0.47 to 2.03 —
Total 4.91 to 6.47 5.24 to 8.45



and the standard deviation of trip time is 

((5 miles)(0.00408(0.80)21.2 + 0.00199
(0.80)4.07))0.5 = 0.065 hours

Table 3 shows the results of applying models 1 and
2 with high and low values. 

Model 2 produces somewhat higher costs for
our hypothetical case with a 20-mile trip, and
model 1 produces somewhat higher costs for our
hypothetical case with a 5-mile trip. The principal
reason for this difference is that model 2 is based
on incident delay only, whereas model 1 is based
on both incident delay and the standard deviation
of trip time. Expected incident delay increases in
direct proportion to trip distance. The standard
deviation of trip time increases in proportion to the
square root of trip distance. Hence, model 1 will
produce higher costs for short trips, and model 2
will produce higher costs for long trips, other
things being equal. The difference between these
two models highlights the need for more research
to determine the most appropriate model form for
valuation of delays due to incidents.

SUMMARY

In summary, a model of traffic incident-based
delays was formulated and estimated for freeways
of different capacities, for a range of traffic con-
gestion levels up to ideal roadway capacities. This
yielded equations for both the mean and variance
of such delays, on a per vehicle-mile basis. These
results were used to demonstrate the potentially
significant time-use benefits that could occur from
reducing such variances. To do this, the literature
on valuing travel time reliability was surveyed for
appropriate models and parameter values. Two
simple models were chosen to demonstrate the size
of the potential time-use benefits involved. The re-

sults mirror similar conclusions reached by Wilson
(1989) and by Noland and Small (1995). If the
results implied by the above approach are reflective
of actual traffic conditions, then policies to reduce
variability in commuting times, such as rapid
response incident clearance systems, may prove
cost-effective, even if average trip times change lit-
tle or not at all. Such systems may perhaps offer a
cost effective alternative to relatively expensive
capacity expansion projects that focus on reducing
average commuting times per se. Given the limited
amount of empirical work on both the valuation
and nature of traveler responses to highly variable
travel conditions, more work in this area is war-
ranted in support of more accurate benefit-cost
analyses.

ACKNOWLEDGMENTS

This research was supported by the Federal High-
way Administration as part of the ITS Deployment
Analysis System (IDAS). IDAS is being developed
for the Federal Highway Administration by a team
headed by Cambridge Systematics under the guid-
ance of Oak Ridge National Laboratory.

REFERENCES

Abdel-Aty, M., R. Kitamura, and P.P. Jovanis. 1995.
Investigating Effect of Travel Time Variability on Route
Choice Using Repeated-Measurement Stated Preference
Data. Transportation Research Record 1493:39–45.

Bates, J.J. 1997. Departure Time Choice—Theory and
Practice, paper presented at the 8th Meeting of the
International Association for Travel Behaviour Research,
September 21–25, 1997. Austin, Texas. 

Black, I.G. and J.G. Towriss. 1993. Demand Effects of Travel
Time Reliability. London, England: United Kingdom De-
partment of Transport. 

Drake, A.W. 1967. Fundamentals of Applied Probability
Theory. New York, NY: McGraw-Hill Book Company.

Giuliano, G. 1989. Incident Characteristics, Frequency, and
Duration on a High Volume Urban Freeway. Transpor-
tation Research 23A:387–396.

Golob, T.F., W.W. Recker, and J.D. Leonard. 1987. An
Analysis of the Severity and Incident Duration of Truck-
Involved Freeway Accidents. Accident Analysis and
Prevention 19:375–395.

130 JOURNAL OF TRANSPORTATION AND STATISTICS DECEMBER 1999

TABLE 3   

Cost components Model 1 Model 2

Travel time under 
uncongested conditions 0.83 0.83

Incident-related delay 0.10 0.21 to 0.63
Standard deviation of 

trip time 0.19 to 0.84 —
Total 1.12 to 1.77 1.04 to 1.46



Hensher, D.A. 1997. Behavioral Value of Time Savings in
Personal and Commercial Automobile Travel. The Full
Costs and Benefits of Transportation. Berlin, Germany:
Springer-Verlag, 245–280.

Jackson, W.B. and J.V. Jucker. 1982. An Empirical Study of
Travel Time Variability and Travel Choice Behavior.
Transportation Science 16.4:460–475.

Lindley, J.A. 1987. Urban Freeway Congestion: Quantifica-
tion of the Problem and Effectiveness of Potential Solu-
tions. Journal of the Institute of Traffic Engineers
57.1:27–32.

Margiotta, R.A., A.K. Rathi, M. Penic, and A. Dixson. 1997.
Examination of Freeway Bottleneck Traffic Parameters
Using FRESIM, unpublished manuscript. 

MVA Consultancy. 1992. Quality of a Journey: Final Report,
prepared for the United Kingdom Department of Trans-
port, contract no. 02/c/5274.

Noland, R. B. and K.A. Small. 1995. Travel-Time Uncer-
tainty, Departure Time Choice, and the Cost of Morning
Commutes. Transportation Research Record 1493:150–
158.

Noland R.B., K.A. Small, P.M. Kostenoja, and X. Chu. 1997.
Simulating Travel Reliability. Regional Science and Urban
Economics (Forthcoming).

Polak, J. 1987. Travel Time Variability and Travel Departure
Time Choice: A Utility Theoretic Approach, discussion
paper no. 15. Polytechnic of Central London.

Schrank, D.L., S.M. Turner, and T.J. Lomax. 1993. Estimates
of Urban Roadway Congestion–1990, report no.
FHWA/TX-90/1131-5. Washington, DC: U.S. Department
of Transportation, Federal Highway Administration.

Senna, L.A.D.S. 1994. The Influence of Travel Time Variabil-
ity on the Value of Time. Transportation 21:203–229.

Small, K., X. Chu, and R. Noland. 1997. Valuation of Travel-
Time Savings and Predictability in Congested Conditions
for Highway User-Cost Estimation, NCHRP 2-18(2),
draft. Washington, DC: Hickling Lewis Brod Inc. 

Small, K.A., R.B. Noland, and P. Koskenoja. 1995. Socio-
Economic Attributes and Impacts of Travel Reliability: A
Stated Preference Approach, California PATH research
report UCB-ITS-PRR-95-36. University of California,
Irvine, CA.

Sullivan, E., S. Taff, and J. Daly. 1995. A Methodology for
Measurement and Reporting of Incidents and Prediction
of Incident Impacts on Freeways, report prepared for the
U.S. Department of Transportation, Federal Highway
Administration. San Diego, CA: Ball Systems Engineering
Division. 

U.S. Department of Transportation, Federal Highway Ad-
ministration (USDOT FHWA). 1996. Exploring the
Application of Benefit-Cost Methodologies to Trans-
portation Infrastructure Decision Making, report no. 16,
Policy Discussion Series. Washington, DC.

Wilson, P.W. 1989. Scheduling Cost and the Value of Travel
Time. Urban Studies 26:356–366.

COHEN & SOUTHWORTH   131


